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Abstract-An explanation of the return flow onset behavior in a long horizontal CVD reactor is proposed 
on the basis of combined analytical and numerical approach. This approach allows one to obtain the 
condition of vortex onset in the form, that includes not only Grashof and Reynolds numbers, but also the 
temperature difference at the reactor top and bottom walls. Also some three-dimensional effects are 
investigate’& which accompany the return flow formation in a horizontal CVD reactor. 0 1998 Elsevier 

Science Ltd. All rights reserved 

INTRODUCTION 

The scientific intierest to the gas recirculation in the 
reaction zone of CVD reactors is caused by at least 
two reasons. Fin5, because of the delay in switching 
from one active component source to another when 
depositing III-V or II-VI compounds. Some amount 
of a reagent always accumulates in the region of vortex 
and remains there for a certain period of time after 
the supply of the reagent is terminated. To obtain 
abrupt layers on’e should wait until all molecules of 
the previous reagent leave the reactor chamber, before 
starting the supply of a new one. Another reason is 
that the transporr processes in a gas change drastically 
when potential flow turns into a vertical one. The 
symmetry may be broken, so that the task dimen- 
sionality rises and much more complicated models are 
to be used. 

MECHANISM OF THE RETURN FLOW 

FORMATION IN HORIZONTAL 2D REACTOR 

Recirculation in CVD reactors has been the subject 
of a number of investigations, both theoretical and 
experimental. Among recent works devoted to this 
problem there is one published by Einset et al. [l]. It 
contains an attempt of theoretical explanation of the 
return flows formation. The authors proposed an 
approach to the problem and derived speculatively 
the condition of the return how onset, which had 
been earlier obtained experimentally [2]. They tried to 
deduce the condition of the return flow formation 
from the tilt angle of the gas pressure isolines. The 
isobars’ tilt to the axial reactor axis itself can not cause 
a recirculation, however the correlation between these 
two phenomena appeared to exist. To find the reason 
for this fact we will try to make some deeper insight 

t Author to whom correspondence should be addressed. 

into the mechanism of the return flow formation. 
Also, the question of how the condition of the recir- 
culation onset depends on the temperature change 
in the reactor is stated for the first time, and the 
explanation for the empirically found condition of the 
vortex formation is proposed in this letter. 

Let us consider the steady compressible flow at 
some low Reynolds number (Re << 1) in a horizontal 
reactor, which length L is much greater than the height 
h. Let the bottom wall, for certainty, to be hot : start- 
ing from the certain value of the horizontal coordinate 
x0 its temperature is Ts. The top wall will be assumed 
cold (its temperature I’,, is maintained constant). Gas 
which comes into the reactor has the same tem- 
perature T,,. Let also both inlet and outlet to be located 
far enough from the point x0, so that the flow far 
from x0 up- and downstream of this point is ‘fully 
developed’ (does not depend on the horizontal coor- 
dinate). Also, some transition region presents inside 
the reactor, where the temperature and velocity fields 
change along X (horizontal) axis. This region occupies 
the part of the reactor space around x0, and its length 
depends on the flow characteristics (Reynolds, Prandtl 
numbers and the relative temperature difference in the 
chamber). 

It can be easily shown, that outside the transition 
region the velocity profile is a Poiseuille one (if ever 
the temperature dependence of the viscosity coefficient 
is not taken into account). The axial component of 
P’$ gradient has a constant value there. The only 

$ P’ is not the gas pressure in its common sense, but the 
difference between the pressure in the reactor and the gas 
hydrostatic pressure for some arbitrary value of the tem- 
perature, and so, mixing of the concepts ‘pressure’ and ‘P 
may cause uncertainties. For instance, the direction of the P 
vertical gradient component may be changed to opposite by 
choosing the appropriate value of the normalizing tempera- 
ture. To avoid such uncertainties, we use notation ‘P” instead 
of ‘pressure’. 
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NOMENCLATURE 

CP gas heat capacity V gas velocity 
Fr Froude number V velocity vertical component 
Gr Grashof number V” velocity scaling factor 

g weight acceleration X horizontal coordinate 
I unit tensor x0 starting point of the wall heated part 

L transition region length Z vertical coordinate. 
P difference between the gas pressure 

and a hydrostatic pressure Greek symbols 
Pr Prandtl number B adjusting parameter 
Re Reynolds number d thermal conductivity 
T temperature p viscosity 

To temperature of the cooled wall Q relative temperature change 

Ts temperature of the hot wall (Ts- TWO 
T dimensionless temperature P gas density 
u velocity horizontal component PO density scaling factor. 

difference between the flows far up- and downstream 
of x0 is that the vertical component of the temperature 
gradient is zero and P’ gradient is parallel to X axis in 
the region upstream of x0, while in the flow down- 
stream of x0 the temperature vertical gradient has 
some finite value and P’ gradient is tilted with respect 
to both X and Z (vertical) axes. Dimensionless form 
of the horizontal P’ gradient for the Poiseuille flow is : 

ap’ 12 -= -- 
ax Re 

where P’ is scaled on the value p. Vi (p. is the density 
scaling factor, V, is the velocity one), Re is the Reyn- 
olds number, the coordinates are normalized on the 
reactor height. (All other formulae are also presented 
in a dimensionless form.) The vertical P’ gradient 
downstream of the transition region is given by : 

where Q is the relative temperature change in the re- 
actor ( Ts - T,)/T,, T’ is the dimensionless temperature 
(T- T,)/T,, Gr denotes the Grashof number. 

where AP, depends on the Froude number 
(Fr = Re%/Gr), since it is the Froude number, which 
represents in the only term of Navier-Stokes equa- 
tions containing temperature [see equations (8) and 
(9) below] and also on 0. 

Far upstream of the transition region P’(x, z) depen- 
dence has asymptotically plane form. The plane is 
inclined to X axis at the angle given by equation (1). 
The shape of P/(x, z) far downstream of the transition 
region may be found using equations (1) and (2). This 
geometry is sketched in Fig. 1. The transition region 
is filled by a pattern. For the sake of easily interpreting 
the downstream asymptotics of P’(x,z) is shown 
plane. The disposition of the plane ABC and the sur- 
face EFGH (see Fig. 1) defines the onset of the recircu- 
lation in the following way: the return flow arises if 
the value of P’, P, (subscript letter means the cor- 
responding point in Fig. 1) becomes greater than P,-, 

To verify our speculations and to obtain an infor- 
mation about APt(Fr,8) dependence, series of cal- 
culations (equations and details of the numerical 
scheme are given in the Appendix) were performed 
for the reactor with high aspect ratio (L/h = 15). 

The calculations, that covered the wide range of 
temperature change for different Re < 1 and Gr, 
shown that AP, may be approximated by the following 
relation : 

AP, = px 
Re’Bf (0) 

the fluctuation f(0) is defined below in equation (6). 
The value of /I, obtained numerically, varies between 

in other words, if positive horizontal component of 
the P’ gradient exists (it is quite noticeable in Fig. 3, 
or Fig. 4 of [l]). If there is no heating (0 = 0) P 
gradient has only the horizontal component, and 
during any length I, P’ drops by the value : 

PE-Ps= _$ 

The influence of the temperature gradient on the 
pressure drop in the transition region of length L, may 
be accounted for by introducing an additional term in 
equation (3) : 

PE_PS = -(;L,+aPJ 
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P’ 

A 

Fig. 1. P’(x, z) surface. In two regions placed far upstream and downstream of transition one, 
is coloured grey. Transition region is patterned. 

0.6 and 0.7 (it rise:3 with rising 0). Integrating equation 
(2), supposing linear dependence of the temperature 
on Z coordinate ‘m the downstream region (it is true 
for the sufficiently low Re, i.e. for a weak forced con- 
vection), one can obtain the pressure change between 
the top and the bsottom walls : 

Gr 
‘PH_PE = ~ 

Re*@f(O) 

where : 

.f@) = 
e 

8-ln(l+e) 

Simple geometrical consideration with applying equa- 
tions (4H6) yieldls the desired condition of the return 
flow formation : 

Gr i2L,ef(e) 
Ke’ (1 -P) 

This formula is valid for arbitrary temperature change 
in the reactor. Condition (7) with a constant right 
hand side has been previously obtained in experiments 
[2] and also, intuitively by the authors of Ref. [l] (in 
Ref. [l] function (6) also arises in speculations, but it 
is not present in ,the final statement.) 

In the case of high Reynolds numbers L, becomes 
dependent on Re (directly proportion to it [4]), so that 
the recirculation onset depends not on the Gr/Re ratio, 
but on the Gr/Re2 one. The latter relation has a clear 
physical meaniqg: at high Reynolds numbers tran- 
sition to the vertical flow is defined by the ratio of the 
gravitational force to the inertial one (viscose force 
has no influence on the process). At low Re numbers 
viscose force has a significant impact on the flow struc- 
ture, and relation Gr/Re reflects this fact, since it is 
the ratio of the gravitational force to the viscose force. 

the surface 

TEMPERATURE DEPENDENCE OF THE RETURN 

FLOWS ONSET CONDITION 

It seems to be quite natural, that at least qualitative 
temperature dependence of the return flow onset con- 
dition has been derived in the form of equation (7) : 
the greater is the temperature change in the reactor, 
the less is the P,IPE at fixed Gr/Re* relation, as it 
follows from equation (S), and therefore, at greater 
GrlRe’ ratio the positive horizontal component of P’ 
gradient arises (Apt diminishes slower than P, - P, 
because of fl < 1). 

To check this conclusion, the series of calculation 
has been performed. The dependence of the critical 
relation Gr/Re” (where n = 1 for Re < 1, and n = 2 
for Re >> 1) on 0 is represented in [Fig. 2(a)]. By solid 
curves in the same figure the GrlRe” dependence given 
by equation (7) and coinciding with the results of 
calculations in the point 0 = 0.01 is represented for 
comparison. At least qualitative correspondence 
occurs. Quantitative coincidence may be easily 
obtained supposing the linear dependence fi = AB+ B, 
as it is shown in [Fig. 2(b)], where coefficients A and 
B are constant for any 8. To achieve better cor- 
respondence one can suppose A and B to be piecewise 
constant in two regions : 0 < 0 < 1 and 1 < 0. 

Some additional considerations may be proposed to 
clarify the obtained results. The energy conservation 
equation, with the temperature as an independent 
variable, is the homogeneous one (all its terms contain 
the temperature to power one). At sufficiently low 
Re, this equation becomes independent of the velocity 
field. Therefore, as 8 changes, the equation solution is 
simply scaled without changing its shape. In other 
words, T’(x, z)/e is independent on 8. 

Let us write down now the Navier-Stokes equations 
(U and V are the X and Z components of the velocity, 



2532 T. M. MAKHVILADZE and A. V. MARTJUSHENKO 

I 
0.01 0.1 I 

Teta 

t 

J 

7-r 

a> 

b) 
Fig. 2. The critical relation Gr/Re (Re < 1) and lO*Gr/Re* (Re > 1) dependence on the relative temperature 
change in the reactor : by arrows facing down the calculated points for low Re are marked, by the up- 
facing ones the same is done for Re > 1. Solid lines show the function, given by equation (7), which 
coincides with the calculated data in the point 0 = 0.01 : (a) p in equation (7) is constant; (b) b varies 

linearly with 0. 

respectively) : 

1 4a2v a2v i a2u Pug+pVg=~ 3s+s+jax ( > 
apj Gr T _- __. 
ay + Re29 l+T” 

(9) 

and note, that the last term in the right-hand side of 
equation (9) is the only one where the temperature 
field appears in these equations. When 0 CC 1, this term 
may be written as (Gr*Re2)(T’/O) and its independent 
of 8. Therefore, the velocity field does not depend on 
0 and AP, has some constant value APto. 

When the temperature change in the reactor rises, 
the source term in the right hand side of equation 
(9) decreases because T’ increases the denominator. 
Therefore, the Navier-Stokes equations tend to their 
isothermal form for high 0, and that is why AP, drops 
as the temperature change in the reactor increases. 
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b) 

Fig. 3. The vortex flow in the horizontal reactor at different hot wall temperatures. The same reactor region 
isdepictedforRe=0.1,Gr=30:(a)B=O.Ol;(b)B=O.l;(cje= 1.0. 

Several interesting facts, that qualitatively sup- 
plement speculations presented above, have been 
noted while performing calculations. First, with given 
Gr/Re relation (at low Re) positive horizontal gradient 
of P’ is either present for all investigated 19 or is not 
present at all. If ir existed for some 0, then with rising 
temperature of the hot wall the absolute positive 
change of P’ (between the local minimum and 
maximum of P’ on the top wall. see Fig. 3) diminished, 
but never vanished. If for some small B0 vortex 
occurred, then i‘or B,, < 0 <c 1, the flow structure 
changed slightly, while for 0 of the order or greater 
than unity, the center of the vortex moved towards the 
top wall, the vortex, being ‘compressed’ by expanding 
gas, became weaker (it is demonstrated in Fig. 3) and 
at some value of 0 vanished. Sometimes it was possible 
to ‘find’ the lost vortex by refining the grid properly 
(in other words, by resolving the vortex on the grid). 

On the other hand, if there was not positive horizontal 
P’ gradient at some value of the temperature change, 
it never observed at any 0, consequently, the vortices 
were not observed too. One can assume, that when 
the positive P’ gradient presents, there is at least theor- 
etical possibility to resolve the vortex by refining the 
grid. The real vortex disappearance takes place when 
the vortex size becomes of the order of the gas fluc- 
tuations size. 

TWREE-DIMENSIONAL EFFECTS. 
ACCOMPANYING THE VORTEX FORMATION IN 

HORIZONTAL CVD REACTOR 

It is not possible to investigate the vortex influence 
on the flow symmetry by means of the two-dimen- 
sional model. Nevertheless, this question is especially 
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Fig. 4. Gr,, (minimum Gr such that for all Gr > Gr,, recirculation presents) dependence on Re in a wide 
reactor : points, marked by the triangles and linked by the solid line are obtained for the 3D reactor with 
insulating side walls, the dashed line and the squares mark Gr, in the case of cooled side walls, the dotted 

line and the crosses denote results for the 2D model. 

0.1 de 10 

Fig. 5. Gr,, dependence on Re in the narrow 3D reactor. The symbols’ meaning is the same as in Fig. 4, 
except for the dotted line and the crosses, that show Gr,, for the wide 3D reactor with the insulating walls. 

important for the 2D model performance, since the 
symmetry violation makes the 2D model inapplicable. 
To study the possibility of applying the 2D model to 
simulate vertical flows, the 3D model program realis- 
ation has been implemented and the series of cal- 
culations has been performed. The parallel piped- 
shaped reactor was considered. The gas inlet was 
placed on one of the reactor’s vertical walls, the outlet 
was located on the opposite one. The heated wafer 
was placed on the bottom wall. The boundary con- 
ditions on the side and top walls were prescribed either 
isothermal or adiabatic. The applied solution method 

was the same, as for the 2D case. All the calculations 
were made for 0 = 2. 

Some results of calculations for different types of 
reactor (relation length x height x width was 
15 x 1 x 5 for the wide reactor and 15 x 1 x 2 for the 
narrow one) and for different kinds of boundary con- 
dition are represented in Figs. 4 and 5. Several con- 
clusions may be made using the results of calculations : 

(1) Recirculation always arises near the side walls. 
It is always less developed in the reactor centre, and 
at the very beginning of the vortex formation process 
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b) 
Fig. 6. Flow structure in the wide reactor : (a) with the insulating side walls ; (b) with the cold ones. Re = 5, 
Gr = 2000 in both cases. The flow lines start on the (imaging) horizontal line in the plane of the inlet (this 
line is reproduced in figure). Axis X is directed along the reactor, 2 is the horizontal axis, Y is the vertical 
one. The vortex may be recognized by the flow lines curvature in the middle of the reactor. The wave-like 
lines along the reactor side walls in (b) has the spiral share in space. These spirals are right near the right 
wall and left near the opposite one, when looking in the gas flow direction (from the left to the right in 

figure). 

(low Gr/Re) there may be no recirculation at all in 
the bulk gas (while near the walls the recirculation 
presents). A conclusion may be made, that the 2D 
model solution, which is most reliable near the reactor 
mid-plane, gives .ihe values of critical Gr greater than 
they really are. :[t is confirmed by the 2D and 3D 
results comparison, see Fig. 4. Anyway, the difference 
between the 2D and 3D models’ predictions is 
sufficiently small and is explained by the boundary 
effects near the side walls. The return flow itself does 
not cause the 2D symmetry break. 

(2) The cooled walls hinder the vortex formation 
comparatively to the adiabatic ones. This fact may be 
caused by the longitudinal rolls formation. The nature 
of these rolls is similar to that of the Rayleigh-Benard 
convection [S]. The well-known fact is that in the 

reactor with cooled walls this phenomena takes place 
at all non-zero Gr. The longitudinal rolls arise near 
the side walls, and the region which they occupy rises 
with rising Gr. In Fig. 6 the gas flow in the wide reactor 
is represented for the two different thermal regimes 
on the side walls (all other things being the same). The 
spiral structures are clearly recognised near the cooled 
walls [Fig. 6(b)]. With rising Grashof number these 
structures occupy the entire reactor volume. It indi- 
cates an appreciable transport process in the lateral 
direction, and, consequently, shows the 2D model to 
be inadequate. In the narrow reactor the same process 
goes at lower Gr, and the 2D model is even less inad- 
equate than it may be assumed, say, on the basis of the 
boundary effects analysis in the isothermal Poiseuille 
flow. Hence the best accuracy of the 2D model is 
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achieved for the wide reactor with heat-insulating 
walls (it has to be noted, that the longitudinal rolls in 
the reactor with the insulating walls arise anyway, 
but only for high Gr, starting approximately from 
Gr - 2440 [5]). Reactor with the cold walls, and 
especially the narrow reactor are described by the 
2D mode1 adequately only at sufficiently low Gr (for 
instance, RefI [6]). 

(3) Recirculation in the narrow reactor takes place 
at higher Gr, than in the wide reactor. 

(4) The power type of critical relation Gr/Re” 

remains unchanged regardless of the boundary con- 
ditions type prescribed on the side walls and of the 
reactor width, at least, at low Re. 

CONCLUSIONS 

The approach proposed in section 1 of the present 
work offers clear explanation for the return flow for- 
mation mechanism in a horizontal reactor with the 
one wall being heated and the opposite one being 
cooled. The recirculation onset condition (7) coincides 
in form with the empirical one and is confirmed by 
the results of numerical investigation. It can easily be 
expanded to the case of high Reynolds numbers, and 
allows to explain the temperature dependence of the 
recirculation onset condition. 

Three-dimensional modeling has shown, that the 
cooled side walls, as well as a small width ofthe reactor 
suppress the return flow formation (as compared to 
the wide reactor with insulating side walls). The inter- 
esting fact is that for Re < 1 the recirculation flow 
onset condition conserves its form regardless of the 
type of flow : 2D or 3D. 
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APPENDIX: THE GAS FLOW GOVERNING 
EQUATIONS AND THE METHOD OF THEIR 

SOLUTION 

The low-Mach number approximation of the gas dynamics 
equations has been used : 

$+v(p”)=o 

y +ww = $4v+v+)- $(vv)I)-vPr 

(AlI 

+ ;;(P-PO) (A-4 

c, c +V(pVT’) ( ’ = j&yv1.) (A31 

These equations were discretized by means of the finite 
differences (control volume) method and solved consecu- 
tively. Coupling between the Navier-Stokes (A2) and con- 
tinuity (A I) equations has been performed using the method 
quite similar to that used in MAC algorithm. The tem- 
perature dependence of kinetic coefficients has been approxi- 
mated by the polynomials (nitrogen has been chosen as a 
carrier). The steady solutions have been obtained by inte- 
grating the equations in time. until the normalized residuals 
drop below some specified small value. 

The Poiseuille velocity profile has been used as an inlet 
boundary condition. The flow direction has coincided with 
the horizontal axis direction. The vortex (return flow) was 
assumed to present if the negative values of the horizontal 
velocity component arise in a steady flow. 


